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Abstract 

Let R be a torsion free principal ideal domain. We study the growth of torsion in loop space 
homology of simply-connected 966IR-coalgebras C, whose homology admits an exponent Y in R. 

Here by loop space homology we mean the homology of the loop algebra construction on C. 

We compute a bound on the growth of torsion in such objects and show that in general this 
bound is best possible. Our methods are applied to certain simply-connected spaces associated 
with classifying spaces of finite groups, where we are able to deduce the existence of global 
exponents in loop space homology. 

1991 Math. Subj. Class.: Primary 55R35; secondary 55R40; 55Q52 

1. Introduction and statement of results 

The growth of torsion in loop space homology is known to be rather difficult to 

control in general. A remarkable example of this was discovered by Anick [2], who 

introduced a finite dimensional CW complex X with the property that the integral 

loop space homology H,(QX; Z) has torsion of all orders. A similar example was also 

constructed by Avramov [3]. On the other extreme, Felix et al. showed in [6] that if Y 

is a space of finite Lustemik-Schnirelmann category, with finite type Z&,)-homology 

and such that the dimension of the graded vector space H,(OY; Fp) grows at most 

polynomially, then the torsion in H,(QY; Z,,,) has an exponent, namely there exists 

an integer r such that p” annihilates all the torsion in the p-local loop space homology 

of Y. 
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The spaces constructed by both Anick and Avramov have the additional feature 

that their integral homology is torsion free. The theorem in [6] on the other hand is 

concerned with neither spaces of infinite category nor with such, where the mod- loop 

space homology growth rate is larger than polynomial. 

The motivation for this paper comes from considering spaces of the form BGP, 

where G is a finite p-perfect group and by (-)F we denote the E$-completion functor 

of Bousfield and Kan [4]. In [lo] we show that for such groups G, the integral loop 

space homology of BG; has an exponent, given by the order of the Sylow p-subgroup 

of G. It is always the case that BG: has infinite category when G is finite and in [ 11, 

121 we present examples of finite p-perfect groups G such that the mod-p loop space 

homology of BG: grows exponentially. Thus, in general, spaces of this form do not 

fit in the context of the theorems mentioned above. 

We specialize to rationally contractible spaces with a reduced integral homology 

exponent and attempt to understand the growth of torsion in their loop space homology. 

Clearly one should not expect an exponent result in general, even when restricting to 

this family of spaces. For example the integral homology of the double loop space on a 

mod-p’ Moore space has p-torsion of arbitrarily high order, even though the homology 

of the single loop space has an exponent p’. Indeed, our study here may suggest that 

it is hardly ever the case that an infinite dimensional rationally contractible space X, 

which admits a homology exponent, still has one in its loop space homology. We refer 

the reader to Section 9 below for further discussion. 

In what follows we will abbreviate the words “differential graded” by the letters 

~3’3. Let R be a commutative ring with a unit. The major tool we use is the loop 

algebra functor s2(-) from the category of $%3R-coalgebras to %%R-algebras [7] 

(this functor is more commonly known as the Adams’ cobar construction [l]). We 

shall generally assume that the ground ring R is a torsion free principal ideal do- 

main (by torsion free we mean that the natural map from the integers to R is in- 

jective). For every g%R-module, the underlying graded R-module is assumed to be 

dimension-wise free and graded by the non-negative integers. A %JR-module (M; d) 

is said to have a homology exponent if there exists a non-zero element r E R, such 

that Y .H,(M;d) = 0 for all i > 0. All topological spaces considered in this note 

are assumed to be pointed, connected and to have the homotopy type of a CW com- 

plex. For precise definitions of the terminology used below, we refer the reader to 

Section 2. 

For a supplemented P%R-coalgebra C, let JC denote the augmentation coideal of 

C. For a supplemented %YR-algebra A, let IA denote the augmentation ideal of A. A 

coalgebra C, as above, is said to have a homology exponent Y E R if r is an exponent 

for H,(X). Similarly one defines what it means for a supplemented 93R algebra to 

have a homology exponent. 

Theorem 1.1. Let C be a c-connected $WR-coalgebra, c 2 1. Suppose that C 

admits a homology exponent r E R. Let d and e be positive integers such that 

e 2 (d - c + 1)/c. Then re annihilates Hi(QC) for each 1 5 i 5 d. 
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We construct an example over the integers, which shows that in general the ap- 

proximation given by Theorem 1.1 is best possible. Indeed if C is precisely (2k - l)- 

connected, for some positive integer k and has a homology exponent r E R then the 

theorem claims that F1 annihilates Hi(s2C) for 1 < i < e(2k - 1) - 1. Thus the least 

d, for which F’ might fail to be an exponent for &(LK’), is d = e(2k - 1). 

Theorem 1.2. For each pair of positive integers t and k, there exists a (2k - l)- 

connected EU-coalgebra Ck*’ with a homology exponent t, such that for every posi- 

tive integer e, H,(2k--,(QCk*‘) contains an element of order te. 

An interesting fact about the 9%7-coalgebra C k,* is that its dual algebra (Ck,!)* 

is commutative and nilpotent of degree 3, in the sense that the third power of its 

augmentation ideal vanishes. Indeed, it is a triviality that if the dual 99R-algebra C* 

of a SYR-coalgebra C is nilpotent of degree 2 (i.e. C has a trivial diagonal) and C 

has a homology exponent r then so does s2C. Our example shows that this fails to 

hold once the nilpotency assumption is relaxed. 

It is known and in fact admits a rather easy proof that if X is a rationally con- 

tractible finite dimensional CW complex, which admits an integral homology exponent 

(trivially it does if it has only finitely many cells), then !Z?X admits an integral homo- 

logy exponent. However the usual proof, using the Serre spectral sequence for the path- 

loop fibration over X, fails to give the best approximation. The methods used in the 

proof of Theorem 1.1 enables us to improve the existing bound. 

Proposition 1.3. Let C be a c-connected 99R-coalgebra of homologicaf dimension 

d with a homology exponent r E R. Then r” annihilates H;(K) for every e > 

(d-c- 1)/c andi > 0. 

Our bound here should be compared with the corresponding result using the Serre 

spectral sequence which gives rd-c as a bound, under the same hypotheses. At the 

end of Section 5 below, we consider finite sub LZJR-coalgebra of those constructed in 

Theorem 1.2, for which the bound given in Proposition 1.3 is best possible. 

Next we study an application of the techniques developed here. Recall the con- 

struction P,(-) on %??R-coalgebras given in [lo]. Given any B?R-coalgebra C, we 

produce an n-connected quotient 9YR-coalgebra P,,(C), such that the natural projec- 

tion from C to P,(C) induces an isomorphism in homology above dimension n. This 

algebraic construction, being motivated by the Quillen “plus” construction, admits a 

topological analogue, which in a sense is an easy generalization of Quillen’s idea. 

Proposition 1.4. Let X be a connected CW-complex and let n be a positive integer. 

Then there exists an n-connected CW-complex P,X together with a map 1, :X + 

P,X, inducing an isomorphism on integral homology above dimension n. Furthermore, 

if C = S,(X), the integral singular chain coalgebra on X, then P,,(C) and S,(P,,X) 

are quasi isomorphic as 9%Z-coalgebras. 
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With the terminology of Proposition 1.4 we now restrict attention to classifying 

spaces BG, where G is a finite group. 

Theorem 1.5. Let G be a jinite group of order N. Then E?,(QP,,BG; Z) is annihilated 

by Nq, where q = 3 if n = 1 and q = 2 otherwise. 

If G is a finite p-perfect group then (P,BG$ is homotopy equivalent to BGC. Thus 

Theorem 1.5 is, in a sense, a generalization of [lo, I, Theorem 11, although in the last 

the exponent is given by the order of the group rather than a power of it. 

All the results above are motivated by topology. However the loop algebra functor is 

a purely algebraic construction and so one could consider loop space homology torsion 

in a context that might have nothing to do with topology. We look at the loop algebra 

functor Q(-) together with its left adjoint, the classifying coalgebra functor B(-) [7]. 

The adjunct morphisms here are equivalences. Thus one could consider a QF#R-algebra 

A, for which the classifying construction B(A) admits a homology exponent and ask 

whether the same holds for A itself. An example of this is given by the following: 

Theorem 1.6. Let A be a nilpotent %!?R-algebra of nilpotency rank n. Suppose that 

B(A) admits a homology exponent r E R. Then r”-’ is a homology exponent for A. 

In Section 8 below we observe that the mod-p homology of a p-local loop space X 

is a nilpotent algebra if and only if it is finite dimensional, in which case it cannot be 

rationally contractible. Thus Theorem 1.6 does not correspond to a topological situation. 

The paper is organized as follows. Sections 2 and 3 are preliminary in nature and 

the techniques developed are applied in Section 4 for the proof of Theorem 1.1 and 

Proposition 1.3. In Section 5 we prove Theorem 1.2. Section 6 is dedicated to the 

proof of an algebraic analogue of Theorem 1.5. The theorem follows using Proposition 

1.4 which we prove in Section 7. In Section 8 we prove Theorem 1.6. We conclude 

the paper in Section 9 by making some remarks and speculations on the subject. 

2. Extended maps on 99R-algebras 

Our terminology is mostly borrowed from [7]. We begin this section by recalling 

the basic definitions we need. 

Let R be a commutative ring with a unit. Recall that a B?R-module A4 is a graded 

R-module, also denoted by M, together with a differential dM of degree - 1. A mor- 

phism of B’%R-modules is a morphism of graded modules, which commutes with the 

differentials. Morphisms of graded R-modules (differential or not) will generally be 

assumed to have degree 0. However we shall frequently use morphisms of non-zero 

degree, in which case the degree will be explicitly spelled out. 

A ggR-module M is said to be positive if M,, = 0 for n < 0. The suspension functor 

C(-), given by (CM), = M,_I and (dzM) = -(dM),_l, is an automorphism on the 

category of BZR-modules and preserves the subcategory of positive s$R-modules. 
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We shall generally assume that R is an integrally torsion free principal ideal domain. 

Let 3Rm denote the category of positive graded R-modules M, such that M, is a free 

R-module for every n. Similarly let 93Rm denote the category of 9?%R-modules such 

that for every object M the underlying graded R-module is an object of ~.%tn. From 

this point and on by a Y&?-module (BgR-module) we shall always mean an object of 

<%Rrn (G%Rm) 

A .B?R-coalgebra C is a positive 93R-module, also denoted by C, together with 

a diagonal AC : C - C @ C and a morphism ec : C - R, such that A is associative 

and I: is a counit for A. A morphism f : C + D of B%R-coalgebras is a morphism 

of %9R-modules, which commutes with the diagonals and such that eof = cc. Notice 

that the ground ring R admits a unique structure of a 5YR-coalgebra. 

A supplemented 93R-coalgebra is a 9%R-coalgebra C, together with a map vc : 

R + C of YgR-coalgebras called an augmentation. A morphism f : C - D 

between two such objects is a map of %9R-coalgebras, which in addition satisfies 

fqc = tlD. For an integer n > 0, a G?%R-coalgebra C is said to be n-connected if 

(a& is an isomorphism for all q 5 n. For a supplemented GG?R-coalgebra C let the 

augmentation coideal JC denote the cokemel of VC. 

The dual terminology applies to define the concept of a 3YR-algebra. Thus the struc- 

ture maps on a supplemented 9YR-algebra A are a multiplication p.4, a unit R 2 A 

and an augmentation A 2 R. For a supplemented B?R-algebra A, let the augmenta- 

tion ideal IA denote the kernel of EA. We let GWRc and 99Ra denote the categories of 

supplemented 99R-coalgebras and algebras respectively, such that for each object the 

underlying graded R- module is an object of 3.2m. As before, by E?R-coalgebras 

and algebras we shall always mean, from now on, objects of 5VRc and B9Ra 

respectively. 

For a 9R-module M, let T(M) denote the tensor algebra on M. Let j : M + T(M) 

denote the natural inclusion map into elements of tensor filtration 1. For an element 

x E M let j(x) be denoted by [xl. The module T(M) is naturally a bigraded object. 

Namely, let bideg([x]) = (-l,deg(x)), and if bideg(yi) = (n;,k,), i = 1.2, then 

bide&t 4’2) = (no + n2,k1 + k2>. 

Definition 2.1. Let M be a %R-module and let F :IT(M) - IT(M) be a map of YR- 

modules of some non-negative degree. We say that F is right extended if it is a map 

of right T(M)-modules. The map F is said to be a right extension off :M - IT(M) 

given by ,f = Foj. 

The following two lemmas are rather elementary. The first appears in [lo, 1, Ch. 41 

and the second is an observation made to the author by John C. Moore. Short proofs 

are included for the convenience of the reader. 

Lemma 2.2. For M E 9Rm, let f: M + IT(M) he a map of YR-modules of some 

non-negative degree. Then there exists a unique right extension F: IT(M) - IT(M) 

off. 
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Proof. For x E M, define F[x] = f(x) and inductively 

F(bl I . . . Ixnl> = w~lIm21 . . . Ixnl. 

Using the fact that Mi is a free R-module for each i, one observes immediately that F is 

a well defined right extension off in the sense given above. Uniqueness is immediate 

from the definitions. 0 

For any R-module M and a non-zero element Y E R, let 4,. denote the endomorphism 

of A4 given by multiplication by r. 

Lemma 2.3. Let M be a 9%R-module, with a homology exponent r E R. Then &. is 

null-homotopic on M. Moreover, there is a choice of a null-homotopy s for &, such 

that s2 = 0. 

Proof. Since M is a free R-module in each dimension and since R is assumed to be 

a principal ideal domain, the short exact sequence of 99R-modules 

is split in 9Rm. Here Z(M) denotes the submodule of cycles and CB(M) means 

the suspension of the submodule of boundaries, where in both Z(M) and CB(M) the 

differentials are taken to be trivial. 

Let 0 denote any right inverse for d and let j denote the left inverse for i, given by 

j(m) = i-‘(m - ad(m)). Notice that m - cd(m) is a cycle for every m E M, so i-’ 

is defined on it. Since ij(m) is a cycle for every m E M, one has by hypothesis that 

r.ij(m) is a boundary. Define 

s(m) = a(r.ij(m)). 

The reader can easily verify that s is a null-homotopy for & and that s2 = 0. 0 

Let C be a simply-connected 9’3R-coalgebra. Recall that the loop algebra functor 

!X is given as a 3R-algebra by QC = T(C-‘JC). As a differential graded module, 

QC is bigraded and has two differentials; an internal differential dI of bidegree (0, - 1 ), 

given by dl[x] = -[dx], where d is the differential of C, and an external differential 

dE of bidegree (- 1, 0), given by dE[x] = ci( - 1 )I”:1 [xi 1x(‘], where Ax = Ci xi @ XI 

is the reduced diagonal. Both differentials are required to be derivations of the algebra 

structure and the total differential dT = dI + dE gives QC the structure of a 9@R- 

algebra. 

Let C be a simply-connected 99R-coalgebra with a homology exponent r E R. Let 

s : C - C be a choice of a null-homotopy for &.. Let si : IQC - 1QC denote the 

right extension of the composite 

C-‘JC = E-‘JC A IQC 

in the sense of Lemma 2.2. It is easy to see then that sr is a null-homotopy for & 

with respect to the internal differential dI [ 10, I, Ch. 41. 
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3. The obstruction map 8 and its iterations 

In some sense, could the map sr, constructed in the previous section, be a map of 

9%R-modules with respect to the external differential, it would then be a null-homotopy 

for & with respect to the total differential d r. However, this is hardly ever the case, 

due to the fact that in general the null-homotopy s on C, “inducing” ~1, fails to be, 

in a sense that can be made precise, a map of comodules over C. We now discuss a 

map 0 of %9?R-modules on SZC, which can be considered as the obstruction for s1 to 

be a null-homotopy of &. 

Given the null-homotopy s for 4,. on C, construct st on IQC, as in Section 2, and 

define 0 = 6(s) : IQC ---+ IX’ by 

u = dss, + S,dr. 

The following are basic properties of 0. The proofs are straightforward from the 

definition and are left to the reader. 

Proposition 3.1. For any null-homotopy s for & on C, let H denote the corresponding 

map on IQC. For each k > 1, let Bk denote the kth iteration of 6. Then 

(1) dk is a map of PZSR-modules with respect to both d@erentials on QC. 

(2) Ok is homotopic to (-1)k4 ,.A with respect to the total dt~erential on ISZC. 

(3) ok is right extended. 

(4) Ok has bidegree (-k, k). 

Corollary 3.2. Let k > 1 and suppose that Bk vanishes on elements of tensor filtration 

1. Then 0” vanishes on IQC. Moreover the map &.A is null-homotopic on Is2C if and 

only if Hk is. Thus tf ok = 0, for some k > 1, then RX has a homology exponent rk. 

Define Sk : ISZC + Is2C by Sk = ok-’ o st Define ck : IQC + IQC inductively by 

~1 = st and for every k > 2, ok = rk-‘sI - rk-‘s2 + ... + (-l)k-‘sk. The following 

equalities provide some more insight into the structure of Ok and can be proved by an 

easy induction. 

Proposition 3.3. With the above notation, the following relations hold 

(1) Skdl + dpk = r6k-‘. 

(2) Bk = C;zO(dEs,)‘(s,dE)k--i. 

(3) Ifs2 = 0 then ok = (dEsl)k + (sldE)k. 

(4) ok = d@k +Skd~. 

(5) $,A = dok + f&d + (-l)k6k. 

4. Proof of Theorem 1.1 and Proposition 1.3 

Let C be a c-connected 959R-coalgebra, c > 1, such that H,(JC) has an exponent 

r E R. Let s be a null-homotopy for & on C, such that s2 = 0. Let T denote the 
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loop algebra construction QC and let st and 0 be the maps constructed in the previous 

sections with respect to s. 

Since C is c-connected, T is (c- 1 )-connected and so TP,4 = 0 for q < -p(c+ 1 )- 1. 

In particular T_ I,~ = 0 if q 5 c. For each positive integer i let T(i) denote the ith 

skeleton of IT. 

Lemma 4.1. Suppose e > (d - c + 1)/c. Then 8” vanishes on T(i), for i 5 d. 

Proof. By Corollary 3.2 it suffices to check that 8’ vanishes on elements of tensor 

filtration - 1, namely on T_i,i, i 5 d + 1. Since bideg(8”) = (-e, e), it suffices to 

verify that T_,+J+~+~ = 0, for each c 5 d < c(e + 1) - 1. Indeed, by the connectivity 

argument above T- 1 _-e,q = Oifq<ec+e+c,whichissatisfiedforq=d+e+l. 0 

Now suppose that C is d-dimensional for some d 2 c. Then we have T-I,~ = 0 if 

q > d. By the same argument as in Lemma 4.1 it follows that the map 8” vanishes 

on IT if e 2. (d - c)/c. However this can be slightly improved. 

Lemma 4.2. Suppose that C is c-connected and d-dimensional for some d > c. Then 

0’ vanishes on IT for e > (d - c - 1)/c. 

Proof. It suffices to show that &Je vanishes on T_ l,d. Indeed, since E! ,p+, = 0 and 

s2 = 0, it follows from Lemma 3.3 that 8’ = (s,dE)e. But (sldE)e = sl((dEsl)e-‘dE). 

Hence the restriction of 0’ on T-1,. factors through T-1 _e,d+e_l, which vanishes since 

d + e - 1 5 ec + e + c. Thus 8’ = 0 on T-l,, and the lemma follows. 0 

We are now ready to prove Theorem 1.1 and Proposition 1.3. Let C be an c- 

connected %!?R-coalgebra with a homology exponent r E R. Let T denote !X. By 

Lemma 4.1, Be vanishes on T(i) for i I d, if e 2 (d + c + 1)/c. Hence for any 

x E T(i), i 5 d, we have by (5) of Proposition 3.3: 

#Ax) = (de, + a&(x). 

Thus P’.&(C) = 0 for 0 < i < d. This proves Theorem 1.1. 

Next suppose that C, = 0 for q > d. By Lemma 4.2, 8’ vanishes on IT, if e 2 

(d - c - 1)/c. Thus & is null-homotopic on ZT and Proposition 1.3 is proved. 

5. Examples 

For each pair of positive integers (k, t) define Cks’ to be the graded free abelian group, 

generated by elements {x,),22 and {~~}~/s, where dimensions of the generators are 

given below. 

1~2~1 = (2k - 1)(2n - 1) + 1, Jxz~+~~ =(2k- 1)(2n- 1)+2, 

IYZ~+II = (2k - 1)2n + 1, IYZ~+Z] = (2k - 1)2n + 2. 
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Define a diagonal map A : C”’ - C”J @ CkJ by 

AX2n = Ay2n+1 = 0, 

n-l 

2X2+, = c X2l @ Y2(n-i)+l + y2(n-j)+l C3 X2i, 

jY2n+2 = Cn2i @ XZ(n-_i+l), 
1=I 

where d denotes the reduced diagonal and extends to A in the obvious way. 

Define a differential d on CkJ by 

dxzn = dyzn+r = 0, 

for each i > 1. 

&ni I = hn > and da+2 = %,+I 

Define a map s of degree +l on Ck’l by 

S-~2n+l = SY2ni2 = 0, 

Notice that s2 = 0. 

SX2n = XZn+l and v2,,+1 = ~2~+2. 

One verifies by inspection that the triple (Ckvf,d, A) is a (2k - 1)-connected 9%Z- 

coalgebra with a homology exponent t and a null-homotopy for +t given by S. Construct 

SI and 8 on I!Xk%’ with respect to the null-homotopy s. 

Proposition 5.1. For each positirje integer n the following equalities hold in LX?“: 

(In) Q2n-‘[Y2n+11 = (-1>“b212”. 
(2,) @n[X&+2] = (-1 )n[x#n+! 

Proof. Since x2,, and yzn+r are primitive for all n 2 1 it follows from Proposition 3.3 

that (3k[%] = (dEsr)k[~2n] and ok[~2n+~l = (&sl)k[~2n+~1. 

One verifies directly that @yj] = -[x212 and that e2[x,] = -[x213. Thus the statement 

is true for n = 1. Assume that /32”-3[y2,_t] = (- 1)‘-‘[~2]~~-~ and f12n-2[~2n] = 

(-1>“-‘[~2]~“-‘, namely that (In-t) and (2,-t) hold. We prove (In) and (2,). We 

have 

~2”-‘[~2,+~1 = -~2”-2&[y2,+21 

= -e2n-2 f3x2ilX2(n~i+l)l 

i=l 

(e2n-2[X2il)[X2(n--r+l)l 
i=l 

By Lemma 4.1 all but the last summand vanish and hence by the inductive hypothesis 

f32n-l[Y2n+ll = -@-2[X2nlm21 = C-1 )“b212n 



78 R. LevilJournal of’ Pure and Applied Algebra 114 (1996) 69-87 

and ( 1,) is proved. Next 

~2n[X2n+2, = -@2"-1‘fE[X2n+3, 

= t32n-’ e[Y2(ni+l)+l IXZil - [XZi(Y2(n--i+l)+ll 
i=l 

= ~~H2n-‘,Y2(n-i+l)tll)[X2il - (82”-‘lx2il)[Y2(n-i+l)+Il- 
i=l 

By Lemma 4.1 all summands vanish except possibly 

(~2”-1[Y2n+ll>b*l and (02n-’ [X2nl)~Y2(n--i+l)+ll~ 

But 

@“-’ [X2J = (p-2 [X2J = (-1)“~‘e[x,]2”-’ = 0, 

Hence 

@2n[X2n+2] = (@2n-I [Y2n+ll)b21 = (-1)“[x212”[x21 = w)“[x212”+‘. 

This completes the proof. 0 

Proposition 5.2. For any positive integer m, the element [x2]” represents a non-zero 

homology class in H,,,(~k_t)(c~,~). 

Theorem 1.2 follows at once from Proposition 5.2. Indeed, set c = 2k - 1. We must 

show that H,,(QCk,‘) contains an element of order f. For e = 2n, consider the class 

CI, E H,,(QCk~‘), represented by the cycle [ye+i]. Since [ye+,] cannot possibly be a 

boundary, ~1, # 0. By Propositions 5.1 and 5.2, 8’,-‘a, # 0. Hence by Proposition 3.1, 

te-‘g, # 0. On the other hand by Theorem 1 .l, tea, = 0. Hence a, is an element of 

order t”. 

For e = 2n + 1, consider the class Pe E H,,(G?Ck,‘), represented by the cycle [xe+t]. 

Again Pe is evidently non-zero. Propositions 5.1 and 5.2 imply that /Y-‘/$ # 0. Hence 

tee’/?, # 0. On the other hand, by Theorem 1.1, te& = 0. Hence ,!& is an element of 

order te. This completes the proof of Theorem 1.2. 

We proceed by proving Proposition 5.2. Let k and t be fixed and let C denote C”‘. 

Let C* = Hom(C; Z) denote the dual of C. Thus C* is a E&Z-algebra with product 

given by dualizing the diagonal map on C. By abuse of notation, we denote the duals 

of xi, yj in C* again by Xi and yj respectively. Let C*(j) denote the subalgebra of C* 

generated by x2,x3 ,.,.,xj+2,Y3,Y4....,yj+l if j is odd and by X2,...,Xj+lry3,...,yj+2 

if j is even. Define C(j) to be (C*(j))*. Thus C(j) is a quotient %EJ-coalgebra of 

C and for every j > 1 there are natural projections 

c 3 C(j+ 1) 3 C(j). 



R. Levi1 Journal of Pure and Applied Algebra 114 (1996) 69-87 

The following lemma is immediate from the definitions. 

Lemma 5.3. For each n > 2, the submodule Ker(cp,) of C(n) is n(2k - I)-connected. 

Thus, so is the submodule Ker(q,) of C. 

Since the element [x2] E QC is preserved under each of the maps Qrc,, it suffices to 

show that [x# is not a boundary in LX(n) to complete the proof of Proposition 5.2. 

Proposition 5.4. The element [x$ is not u boundary in QC’(n) but [x#+’ is. In 

fact for each m > 1 there exist decomposable elements A,,, E QC(2m) and B, E 

BC(2m - 1) such thut 

(1,) d(t2m-2 [~2~+21+ B,) = 1~21~~ in QC(2m - l), 
(2,) d(t2”-’ [qm+3] + A,) = [zQ]~~+ in QC(2m). 

Furthermore, ij’z; E LX(n) is such that dz:, = [x~]~+‘, then z; is indecomposable. 

Proof. We first show that [x21n is not a boundary in QC(n). This certainly holds for 

n = 1. Thus assume [x# is not a boundary in LX(j) for j < n - 1 and suppose 

n = 2m. The kernel of qzrn through dimension (2k - 1)2m + 2 = Iyzm+2/ is given 

by the element yzm+l. Thus the kernel of Qq2, through dimension (2k - 1)2m + 1 is 

generated by the element [~2~+11 if k > 1 and by [YZ~+II, [YZ~+I lx21 and b21~2~+11 
if k = 1. Notice that in either case Ker(Qq2,) through dimension (2k - 1)2m + 1 

consists of cycles. 

Suppose z E StC(2m) is such that dz = [~2]~~. Then by naturality df&pz,,,z = [x~]~~ 

in N’(2m - 1). But by our induction hypothesis it follows that Q432,z is indecompos- 

able in QC(2m - 1). Hence it contains an essential summand of tensor filtration 1. Since 

!&II, maps the single element of tensor filtration 1 and total dimension (2k - 1)2m + 1, 

[JQ~+~], non-trivially, it follows that z itself is indecomposable. But in SZC(2m), [y2,,,+2] 

is not a cycle with respect to the internal differential. This yields a contradiction. The 

case II = 2m + 1 follows by analogy. 

Next we must show that [x#+t 1s a boundary in LX’(n). Notice that d[yb] = [x212 

in &KY(l) and that d(t[xs] - [y3lxj] - [x21y4]) = [x213 in LK’(2). Thus (lm) and (2,) 

hold for m = 1. Assume that for each ,j < m - 1 there are decomposable elements Ai 

and B: in OC such that 

(1,;) d(t2i-2[y2j+2] + B!) = [x212j - t2j-’ bZj+l It 
(25) d(t2j-’ [x2j+3] + A!) = [x212j+l - t2j[x2,+2]. 

Notice that (1:) and (2:) are satisfied for j = 1 with respect to A’, = -([ys]x3] + 

[x21 yb]) and B’, = 0. Proving (1,) and (2,n) amounts to showing that there are de- 

composable elements A; and Bh in QC, such that (1;) and (2;) hold. Indeed, re- 

ducing (1;) to !ZC(2m - 1) and (2:,) to QC(2m) yields ( lm) and (2,). For a graded 

algebra A and x, y E A, write [x, y] for the difference xy - (-1)1”~1~1 yx. We write 

down the formulas and leave it for the reader to verify that the required equations 

hold. 



80 R. LevilJournal of Pure and Applied Algebra 114 (1996) 69-87 

Define, for m 2 2, 

@,I,, = -023A;-, + f2m-3([X2jX2m+11 + [X2&31)). 

Bin,2 = c t2(m-j)-1[t2j-2[X2j+l] + Us__1 + [X3][X2]2j-2, [X2(m_j+l)]]. 

2<jcq 

For m even define Bk,3 = 0 and for m odd define 

B;,3 = tm-2 m31[~21m--Ibm+d + tm-‘[&n+*(X,+Il + t&[xm+ll>. 2 

Next define 

AL,, zz -p-2 b21yzm+21 + b21B; + t 2m-2b2m+l Ix3lh 

Ah,,2 = 2 t2(m-j)[t2j-2[~2j+I] + tAA(i_1 + [x3][x2]2j-2, [Y2(,-j)+3]]. 
j=2 

Let 

Bk = BL,, + Bk,2 + Bk,3 and A’, = AL,, + A&. 

Finally we must show that if bl, E QC(n) is such that dbl, = [x2]“+‘, then b: 

is indecomposable. This is evident for n = 1. Let b, E W(n) denote the element 

constructed above such that db, = [x$+’ in QC(n). Assume that bl, is a decomposable 

element with the same property. Then by naturality dQq,,b~ = [x#+‘. Hence the 

element QqnbL - b,_l [x2] is a cycle in QC(n - 1). However lb,_ 11 = (2k - 1)n + 1 

and QIJ+, is an epimorphism in this dimension with kernel given by cycles. Thus b,_l 

can be pulled back to QC(n) and the lift is unique up to a cycle. Hence the element 

bl, - b,_l[xZ] is a cycle in X(n). However by (IA) and (2;), db,_l = [x21n - t”-‘a in 

QC(n), where a = [yn+t] if n is even and [xn+t] otherwise. Thus d(bl, - bn-1[x2]) = 

t”-‘a[xz] # 0. This yields a contradiction and thus completes the proof. 0 

For each triple of positive integers (k, t, n), we consider two sub-SK??-coalgebras 

A’,‘,” and Bk,‘,” of C”‘, generated as free abelian group by the sets {Xi};:;’ U {yj};i, 

and {Xi}~~~’ U {yj}jEi2 respectively. One immediately observes that AkJJ c BkJ,” as a 

sub-9%Z-coalgebra, for each n 2 1 and that both Ak,t,n and BkJ,n are closed under 

the null-homotopy s for &. Furthermore, Ak,‘J and BkatJ are ((2n - 1)(2k - 1) + 2) 

and (242k - 1) + 2)-dimensional respectively. By Proposition, 1.3, te.H*(Ak,t,n) = 0 if 

e > 2n - 1 and t’.H*(Bk,‘,“) = 0 if e > 2n. 

On the other hand since both Ak,‘,” and Bk3t3n are sub-%!?Z-coalgebras of Ck,’ and 

since [x2] represents an element of infinite height in H,(S2Ck,‘), it follows that the same 

holds in the loop space homology of Ak,t,n and Bk,t,n. Thus by the above argument [x~J 

represents an element of order t2n-’ in H(2n_1)(2k_~)(S2Ak,‘,“) and [yzn+t] represents an 

element of order t2” in H2n(2k-tj( SZBk,“,“). Hence the approximation of Proposition 1.3 

is best possible in these examples. 
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6. Transfer type null-homotopies 

In this section we restrict attention to a particular family of 93R-coalgebras, namely 

those 93R-coalgebras which appear as a suitable modification of the classifying con- 

struction B(A) on a %29R-algebra A, concentrated in degree 0. 

We start by recalling the construction P,(-) on 39R-coalgebras as introduced in 

[lo]. Let C be a 99R-coalgebra. For some integer n > 0 consider the differential 

d, : Cn+l i C,,. Since R is assumed to be a principal ideal domain and C, is free, 

the image B,(C) of d, is a free submodule of C,,. Thus there exists a right inverse 

E, :B,(C) - Cn+l for d,. Let CA,, denote the image of E, in C,,+i. Let D denote 

the sub-9%R-module of C given by Di = Ci for 0 < i 5 n, D,,+l = CL,, and D, = 0 

otherwise. Define P,C to be the quotient .9?9R-module C/D. Notice that P,C is a 

3YR-coalgebra by construction and that the projection I, : C - P,,C is a map of 

9’3R-coalgebras. The following are elementary properties of P,C and are proven in 

[lOI. 

Proposition 6.1. Let C be a Z?JR-coalgebra. Then for every n > 0 

(1) the projection t, is a split epimorphism in SMRm. 

(2) z, induces a homology isomorphism above dimension n. 

(3) P,C is n-connected. 

Let C be a 9’3R-coalgebra and let s denote a self map of C of degree +l. Let n 

be a fixed positive integer. Consider the projection 1 = I, : C - P,C, where P,C is 

constructed with respect to some right inverse E for the nth differential d as above. 

Denote elements of P,,C by lx, where x E C is some pre-image. A right inverse VI of I in 

SWRm is given by the identity in dimensions higher than n + 1 and for lx E (P,,C),+, , 

define V(E) = x - &Ax. Then s” = zsu can be identified with s in dimensions higher 

than n + 1 and for rx E (P,C)n+l one has 57(1x) = s(x) -s&d(x). 

The self map of C given by f S = ds + sd is a map of 9%R-modules, for which s 

is a null-homotopy. Suppose that fS = & for some Y E R. Then it is easy to verify 

that ? is a null-homotopy for the self map of P,,C, given by f, = tfSn. 

We now specialize to the case mentioned above. Let A be a 99R-algebra concen- 

trated in degree 0. Let B(A) denote the classifying construction [7] for A. A self- 

map .s of degree $1 on B(A) is said to be a transfer type null-homotopy, if for 

each n > 1 

S([XllXZl . . IX,]> = C ai[X(lXi’iX*l . . \Xn], 

whenever s([x,]) = xi ai[&IXi’]. Notice that transfer type null-homotopies s are a priori 

unlikely to satisfy s2 = 0. 

Proposition 6.2. Let A be a SYR-algebra concentrated in degree 0, which is free as 

an R-module. For some r E R, let s be a transfer-type null-homotopy for 4,. on B(A). 



82 R. LevilJournal of Pure and Applied Algebra 114 (1996) 69-87 

For some n 2 1 let 8 be the corresponding map on QP,,B(A). The for every k > n 

ewl 1 . . . Im 

= (-l)“([& / . . ~&llzb,+~ I . . lxd> - ([usd[xl I . . . Ixn+,]lz[xn+~I . . lxk]]). 

Thust12=Oz~n>1and83=Oz~n=1. 

Proof. The proof amounts to calculating 0 on the algebra generators for QPEB(A) 

given by [z[xlIx2I . . . lxdl, Xj E A, observing the fact that 0 is right extended. In 

computing dEsl on a typical generator [.x] of homological degree k, we may assume 

that k > 2n + 1, since otherwise the element s”(x) is primitive in the coalgebra structure 

of P,B(A) and thus dE vanishes. 

&si [r[xt 1x21 . . . lxk]] = -dE c ai[z[x(Ixi’lx21 . . . lxk]] 

= ~ai(-lYT~[,ll-Qx2I ... Ix,II~bn+~I ... lxkll 

k-2n- I 

+Cai C (-1Y+j[Z[X’IX:IIX2/ . IXn+j]lZ[Xn+,+l I . . . IXk]] 

i j=l 

=(-l)“[~~[~l~~Z~“‘~~,]~~[~,+l~.“~~k]] 

+(-l)“+lbdxl 1x21 . ” I-%+l]l4&+2I ” ’ IXk]] 

k-2n-I 

f c (-1~fj’1~l[~[~l~~2~“~~x~+j]~~[~~+j+l~”’~xk]]~ 

j=2 

On the other hand 

SldE[Z[XIIX21 . . . lxk]] = (-l)“+h[Z[x~ /X2/ . . . /Xn+~]/z[x,+2/ . . . lxk]] 
k-2n-1 

+ C (-~)“+~sI[z[X~IX~I ’ ” I&+jIlZ[Xn+j+l) . .’ Ixk]]. 

j=2 

Thus adding the two equations we get 

@[XllX21.. iXk]] = (-l)w[XlIX21.~~ IXn]lZIXn+l 1.. . IXk]] 

+(- 1 )n+l [+11x2 1 ’ . ~%1+11~ &+2 1 . ’ /Xk]] 

+(-~)“+‘~l[~[~l(~2~“‘~~,+1]~~[~,+2/.”~~k]] 

= (-l>“[dxI 1x21 . . Ixn]I@&+lI ” ’ [Xk]] 

+(-1)“+1[z~[~11~21”‘~~,+11~~[~,+2~”’/~k11 

+(-1)“[~dxl~x2~ “. (&+11~~[&+2~ . ” IXk]] 

+WY+‘bd[XlIX21 . . . ~xn+1]~~[xn+2~ . . . [Xk]] 



R. LevilJournal of Pure and Applied Algebra 114 11996) 69-87 83 

-[~=d[w I . Ix,,+1lI~bn+2/ . Ixkll)> 

as claimed. 

Notice that Q[r[xr I . . . lxk]] = 0 if k < 2n. S’ mce H is right extended, it follows that 

d2 = 0 if n > 1. If n = 1 then g2 might not vanish but then O3 certainly does. This 

completes the proof 0 

Corollary 6.3. Let G be a finite group of order p’m with (p,m) = 1. Let B[G] 

denote the classifkg construction for the group ring Z(p)[G]. Then p2’ annihilates 

&?,(StP,B[G]) if’n 2 2 and p3’ annihilates I?,(S~P,B[G]). 

Proof. For a finite group G of order N there is a canonical null-homotopy s for the 

map 4~ on B[G] given by 

0IlX2l ” IGIl> = C[xlx, 1x21 . . . l?J 
XEG 

The map s is easily seen to satisfy the hypotheses of Proposition 6.2. The result follows 

from Corollary 3.2. 0 

Theorem 1.5 now follows by combining Corollary 6.3 and Proposition 1.4, which 

we prove in the next section. 

7. Geometric realization of the construction P,, 

Throughout this section whenever we say a space, we mean a pointed connected 

CW complex for which the cellular chain complex admits a natural strictly coassocia- 

tive diagonal. This can of course always be obtained by geometrically realizing the 

associated singular simplicial set. This restriction is imposed here for simplicity and 

has no further significance. 

Let Xcn) denote the n-skeleton of a given space X. Consider the space P$X’ ob- 

tained from X by collapsing Xc”) to the base point. Obviously the natural map IL : 

X + PAX induces an isomorphism on homology groups 17;(-; Z) for i > n + 2. 

Furthermore, H,(X(“); Z) is free abelian and thus it follows by inspection of the as- 

sociated long exact homology sequence that H,+, (PAX; Z) Z H,+I (X; Z) @ F, where 

F is a free abelian group and that 1; induces the obvious split monomorphism in this 

dimension. Notice that the free abelian group F is none other but the subgroup of 

boundaries B,(S,(X; Z)), where by S,(-; Z) we denote the cellular chain complex 

on X. 

Next the Hurewicz isomorphism theorem implies that 7c,+,PAX ” H,+l(X; Z) $1 F. 

Choose generators {fi};E, for F and realize each ,fi as a map Sn+’ L PAX. Define 
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P,X to be the cofibre in the sequence 

It is immediate that the natural map I, : X - P,,X induces an isomorphism on 

homology groups in dimensions larger than or equal to n -t- 1. This completes the proof 

of the first part of Proposition 1.4. 

To prove the second part an intermediate step is needed. For a 99R-coalgebra C, 

define P,S as follows. Let F denote a free R-module on as many generators as the 

submodule of boundaries B,(C). Without loss of generality we may identify F with 

B,(C), thus the differential d : C,,+l -+ F is an epimorphism and one can choose a right 

inverse E for it. Let P,C be the 93R-coalgebra given by dividing C by its n-skeleton 

with the additional modification that (PnC)n+~ = C,,+Z @F. Define d(x, y) = dx + my to 

be the differential on (p’,Q,+z. Require that every element in (P,IY)~+~ is primitive. It 

is thus easy to verify that the obvious map i: C --+ P,C is a map of 99R-coalgebras 

inducing an isomorphism on homology in dimensions larger than n. If C = S,X, then 

making compatible choices for the attaching maps defining P,,X out of P$Y and the 

right inverse a, we immediately get that there is an isomorphism of 9%R-coalgebras 

P&X E S*P,X. 

Next for any _9%R-coalgebra C, one can define P,,C and P,C with respect to the 

same right inverse E for the differential C,,+i 5 B,(C). Thus it is immediate that there 

is a quasi isomorphism of 9%R-coalgebras p,,C - P,,C. Applying this for C = S,X, 

completes the proof of Proposition 1.4. 

We end this section by pointing out that although P,( - ) and P,( - ) are equivalent 

constructions on 9%R-coalgebras, P,,(-) behaves nicer with respect to algebraic maps 

due to the fact that the projection C L P,,C is a split epimorphism in the category of 

93R-modules. On the other hand p,(-) corresponds more naturally to the geometric 

analogue. 

8. Nilpotent B?R-algebras 

In this section we prove Theorem 1.6 and observe that it does not correspond to a 

geometric situation. We begin with a proof of the theorem. 

Let A be a 9%R-algebra and assume that the classifying construction B(A) admits 

a homology exponent Y E R. Assume further that A is nilpotent as an algebra, namely 

that some power of its augmentation ideal IA vanishes. 

There is a quasi isomorphism of 9%R-algebras [7] 

a(A):QL?(A) - A. 

Since cc(A) is multiplicative, cr(A)(ZLB(A))n C(ZA)“, for every n > 1. 

Next, by hypothesis B(A) admits a homology exponent Y E R. Thus we have a null- 

homotopy s for & on B(A). Let 6’ denote the map constructed on sZB(A) with respect 
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to s. Then the kth iteration Bk of 0 increases tensor filtration by k and is homotopic 

to 4,~ up to a sign. Thus for every k 2 1 we get a commutative diagram 

&‘B(A) < (IQB(A))k+’ 3 (IA)‘+’ 

1 = 1 inc 
1 

Inc 

ZQB(A) 0” 
XV ) 

ZSZB(A) -----+ IA 

By hypothesis (IA)” = 0, which implies Theorem 1.6. 

Next we observe that Theorem 1.6 does not refer to a topological situation, but rather 

to a purely algebraic one. The content of this remark is contained in the following: 

Proposition 8.1. Let X be a simply-connected, rationally contractible space of jinite 

type. Then H,(QX; 5) is not a nilpotent algebra. 

Proof. First observe that a finite loop space cannot possibly have a rationally con- 

tractible classifying space. Indeed Kane showed [9, p. 256, 3001 that the loop space 

homology of simply-connected finite H-spaces is torsion free and hence rationally 

non-trivial. Thus by C-class theory of Serre, a finite H-space cannot have a rationally 

contractible classifying space. Hence we may assume that Szx is infinite dimensional. 

Consider the Hopf algebra H,(sZX; 5,). By assumption it is an infinite dimensional, 

cocommutative Hopf algebra, which is nilpotent as an algebra. But such Hopf algebras 

do not exist by Proposition 8.2 below. 0 

Proposition 8.2. Let A be a cocommutative Hopf algebra of jinite type and infinite 

dimension over a field k of characteristic p > 0. Then A is not a nilpotent algebra. 

The rest of this section is devoted to the proof of Proposition 8.2. The proposition is 

rather elementary and should be well known to the expert. We include a proof for the 

convenience of the reader. Graded vector spaces are always assumed to be of finite type. 

Lemma 8.3. Let A be a cocommutative Hopf algebra of jinite type over a jield k of 

characteristic p > 0, which is nilpotent as an algebra. Then the underlying algebra 

of the dual Hopf algebra A* is locally nilpotent, namely there exists no element x E A 

of injinite hight. 

Proof. Let A be a cocommutative Hopf algebra over a field k of characteristic p > 0, 

which is nilpotent as an algebra. Assume that the dual commutative Hopf algebra A* is 

not locally nilpotent as an algebra. Then we claim that A* contains a primitive element 

y of infinite hight. Indeed choose an element x of infinite hight and minimal degree. 

Then, since every element of lower degree is nilpotent, some power y = xJ” must be 

primitive. 

Let y E A* be a primitive element of infinite hight. Then there is a monomorphism 

of Hopf algebras 

4 P[y] ---+ A*. 
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Dualizing we get an epimorphism of Hopf algebras 

where T[y] denotes the divided polynomial algebra over k on one generator. In par- 

ticular T[y] contains products of arbitrary length and, thus, so does A, contradicting 

its nilpotency. q 

Lemma 8.4. Let A be a commutative Hopf algebra of infinite dimension over a field 

k of characteristic p > 0, which as an algebra is locally nilpotent. Then the dual 

Hopf algebra A* contains non-vanishing products of arbitrary length. 

Proof. Since A is commutative the Bore1 structure theorem applies and A is isomorphic 

as an algebra to a tensor product of monogenic algebras. Assuming that A is locally 

nilpotent implies that the Bore1 decomposition for A does not contain polynomial fac- 

tors. Hence it must be infinitely generated as an algebra. Consequently the module of 

primitives in the dual Hopf algebra P(A*) is infinite dimensional. But a product of 

an arbitrary number of distinct primitives in a Hopf algebra is never zero. The result 

follows. 0 

Lemmas 8.3 and 8.4 imply that a cocommutative Hopf algebra over k, for which the 

underlying algebra is nilpotent must be finite dimensional, which completes the proof 

of Proposition 8.2. 

9. Speculations, finiteness properties 

In the study of loop space homology torsion, it seems reasonable to try and relate 

certain finiteness conditions on the objects under consideration to the existence of 

exponents. One may take two different approaches here. Fix a 99?R-coalgebra C with 

a reduced homology exponent r E R. 

The first approach is to assume certain finiteness conditions on C and try to gain 

control on the growth of torsion in loop space homology. In particular one might 

be interested in finding a loop space homology exponent. Thus one may assume for 

instance that C is of finite rank over R, in which case we have shown that QC admits 

a homology exponent. If C has a trivial coproduct then it is immediate that C and 

QC have the same homology exponent as is the case when C is the chain coalgebra 

for a rationally contractible suspension space. One might thus expect that nilpotency 

of the Horn-dual of a 99R-coalgebra C should imply the existence of a loop space 

homology exponent. However by Theorem 1.2 this is not nearly the case. Indeed the 

99&Y-coalgebras Cs’ constructed in the theorem have the property that their duals are 

nilpotent of degree 3. 

A finiteness condition on C, which we did not consider here is the existence of 

only finitely many primitives in C. Namely one may conjecture that if C contains only 
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finitely many primitives, then s2C admits a homology exponent. In fact we are not 

aware of a counter example to this. 

The second approach to the problem is taken in Section 8 above and arises by 

recalling the fact that for every %?R-algebra A, the natural map QB(A) - A is a 

homotopy equivalence. Thus one may like to consider 9YR-coalgebras of the form 

B(A), which satisfy our basic hypothesis of having a homology exponent and impose 

additional finiteness conditions on A. 

If A is concentrated in degree 0, then the study of its homology does not make 

too much sense. But in this case one might like to study the associated ~~‘R-algebras 

QP,B(A). If A is of finite rank over R, as is the case if A = R[G] for a finite group G, 

then it is not hard to construct a condition which imply that B(A) admits a transfer type 

null-homotopy for $,., where Y is the image of the rank of A in R under the canonical 

map from the integers. However the existence of such a null-homotopy appears to 

impose severe restrictions on the algebra structure of A. We thus find it reasonable 

to conjecture that there exist algebras A, concentrated in degree 0, which are finitely 

generated as algebras or even of finite rank over R, such that B(A) has a homology 

exponent but SZP,,B(A) does not have one. 
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